Kamma-drager i låve på Dvergsten, Gran på Hadeland. Låven er en gedigen vinkellåve og en av Opplands største bindingverks-låver. Det er flere titalls kamma-dragere med forskjellige funksjoner i låven.
I følge Gards-boka skal låven være fra ca 1900. Dette kan stemme godt om man sammenligner andre store bindingverksbygg fra denne tida her i distriktet. Konstruksjonene er hovedsakelig bygget i gran og av dimensjoner som er langt over hva som var mer vanlig i låvebygg fra denne tida. Materialene er skåret på oppgangssag og de fleste mål ser ut til å være i engelske tommer.
Jeg valgte å se nærmere på en drager oppunder låvebrua over der som det tidligere har vært stall.
Drageren er en del av en sammensatt bærekonstruksjon der last tas opp ovenfra og fordeles nedover i bygget. Den tar last fra både kjørebru, stående takstoler og takstoler som står vinkelrett på takflatene samtidig som den viderefører last gjennom skrå-strevere ut til yttervegg og gjennom en spenn-bukk under kjørebrua.
Drageren er satt sammen av fem stk 7» x 9», to lange underst og tre stk oppå. De øvre er fordelt med en lang på midten og en kortere ut mot hver ende. Drageren er ca 16,5 meter lang og har 42 kammer. Kam-avstand er lik i hele dragerens lengde med kammer som er 15 1/2» lange og 2» høye.
Bolter er 3/4» og hengstagg er 5/4» . Boringen av bolthull er noe tilfeldig og bommer på opp mot 1 1/2» enkelte steder.
Oppmerking er gjort med blyant og tømmermanns-vinkel ned langs sidene på drageren. Det er merker for både kammer og bolter. Det også noe skriftmerking som ikke er tolket.Kam-sammenføyninger er svært nøyaktig gjort og er utført med håndsag på de vertikale snittene og teljet og pusset med bile på skråflatene.Kam-mønsteret er litt spesielt inn mot midten av drageren. Kan det ha vært en måte å låse emnene ved opp-spenning?
Det beklages at bildene er uskarpe! Det var dårlig lysforhold så jeg måtte bruke blitz og dette i kombinasjon av mye støv fra gammelt høy så ble det bare sånn.
Ein kan kanskje tenkje seg at lyfting av hus er ein ny ting, og at ein i eldre tid ikkje hadde nokon korrigeringsmogelegheit dersom huset seig i grunn, eller fekk skadar på anna vis. Skadar som skuldast råte, eller for dårleg materialstivheit. Etter kvart fann eg ut at det var noko som heitte for husskrue. Denne hadde som funksjon å lyfte bygg som hadde vorte utsett for sig og/eller annan skade. Eg var sikker på at desse husskruane kunne lyfte småhus og at det stoppa der. Etter kvart forstod eg at desse skruane faktisk kan lyfte store bygg og at dette med lyfting ikkje er nokon nymotens sak.
Skisse av husskrue
Eg kjem ofte borti bygningar som er prega av setningsskadar. Her herskar ofte råte, deformasjonar og sig. Dette førar til at bygningsdelar må skiftast ut, og at konstruksjonen må lyftast opp mot original posisjon. Desse arbeida kan by på utfordringar. Er det råte i konstruksjonen, må dette kanskje bytast ut før ein kan lyfte i bygget. Ideelt sett burde konstruksjonen vore lyfta fyrst, og den skadde delen skifta etterpå. Det er alltid enklare å finne ut nett korleis bygningsdelen skal utformast når bygget står i rett posisjon. Det er heller ikkje alltid så enkelt å finne ut kva som har vore originalhøgda på bygget. Det er ikkje sikkert at det originalhøgda betyr alt, men at ein får bygget opp, slik at avstanden frå bakken og opp til trekonstruksjonen blir tilfredsstillande. Og sjølvsagt er det viktig at konstruksjonen blir høveleg i lodd og vater.
Låvekonstruksjon som har for svak materialstivheit
I mange tilfelle kan ein gå nokre runder før ein finn ut kva som faktisk er årsaka til dei aktuelle skadane på bygningen. Difor har eg eit ynskje om å utvikle ei enkel sjekkliste som kan leie fortare fram til dei konstruksjonsmessige avvika i bygningen. Denne sjekklista vil teikne eit bilete av kvifor, og i kva rekkefølge, konstruksjonen har fått desse skadane. Med dette meiner eg at det er enklare vite kvar ein skal seta inn tiltak i konstruksjonen for å koma tilbake til originalposisjon.
Som ein kan sjå på fotoet over, bular veggen kraftig utover. Bygningen er utsett for kraftige setningar. Setningane ser ein ikkje så godt på fotoet. Bygningen er om lag 8 meter breid og om lag 12 m lang. Den øvre delen av konstruksjonen har sige 36 cm, grunna råteskade, denne delen av konstruksjonen står på fjell. Den ytre delen av bygget har sige om lag 17 cm, her skuldast siget at grunnen ikkje har tolt tyngda av bygget. Desse differansane er målt mot den delen av bygget som er høgast. Ofte kan ein gå i den fella at ein trur at den delen som er høgast, ikkje har sige. Dette syner seg ofte å vere feil. Ofte har det høgste punktet òg sige. Det er om å gjera å finne ut kor mykje, og om konstruksjonen må opp på same høgda att.
Prinsippskisse – syner klave med klyper (klave inne i bygg).Klave ut mot gavl, her ser ein at klypene manglar, det er lagt inn to skråstivarar.Sterkt overdrive blir gavlklaven sjåande slik ut.
Eg er litt usikker på kvifor det manglar klyper i gavlen på denne låvekonstruksjonen. Dei er på plass på kvar side av kjørebrua i andre enden av bygget. Krefter som normalt vil gå i klypa, overførast til kledningen i gavlen. Så lenge kledningen er stiv nok, held klaven seg oppe. No som kledningen ikkje lenger taklar tyngda frå taklasta, slår det seg på ein bul på veggen.
Eit system for å identifisere skader i konstruksjonar vil difor bygge på dei visuelle skadane: – Deformasjonar på tak vil kunne oppstå ved setningar, anten desse er skapt av råte i vegg-, dekke-, eller takkonstruksjon, sig i grunnen, nedbøying eller brudd i tak, vegg eller dekke som følgje av overbelastning. Reaksjonsmønsteret er avhengig av konstruksjonstypa.
Eg tenkjer eit system basert på følgande framgangsmåte:
1. Vudering av møne og takflater. – Sjekk taket for lekkasje.
Raft og møne er som oftast bygd heilt rette og også takflatene er i eitt plan. Ved å sikte etter møne og raft ser ein lett setningar. Bruk snor eller laser for enklare å sjå avviket.
a. Setningar i raft, vanlege årsakar: – Setningar i grunnen forårsaka av tele eller sig i grunn – Råte i svill – Deformasjon i etasjeskille i yttervegg – Nedbøying sperre/sperrebind
b. Setningar i møne, men ikkje i raft, vanlege årsakar: – Skadar i takkonstruksjon (råte, brudd, nedbøying)
2. Vudering av veggar.
Veggane er som regel bygd rette og i lodd.
a. Buling av vegg oppe ved raft, vanelege årsakar: – Skade på samhald -Skade på skråstivar/klyper – Stor vridning på toppsvill
b. Buling av vegg nede ved syll, vanlege årsakar: – Skade på samhald/manglar samhald – Skade på svill råte eller deformasjon – Bøying av veggkonstruksjon
c. Buling på midten, etasjeskille, vanlege årsakar: – Skade på samhald/manglar samhald – Skade på svill råte eller deformasjon
d. Helling på heile veggen, vanlege årsakar: – Skråstivar fangar ikkje lenger opp rådande kraft – (råte i svill/stolpe sig i grunn) – Tele kan dytte veggen ut av posisjon, sjølv om andre høgda står på om lag same plass
3. Vurdering av dekke
Dekket er normalt bygd i vater (avhengig av føremål)
a. Høgdeavvik, vanlege årsakar: – Råteskade i konstruksjon eller underliggjande konstruksjon – underliggande konstruksjon sig i grunnen
4. Vurdering av grunn
Å vurdere grunn kan vera vanskeleg. Ofte kan det vera slik at ein kan seie mykje om grunnen, ut i frå korleis bygningen ser ut. a. Høgdeavvik – Laus grunn, dårlege massar, forårsakar sig. – Telefarlig grunn, forårsakar sig og/eller utpressing Desse faktorane kan vera direkte eller meir eller mindre indirekte og må undersøkjast nøye.
Skissehjelp
Som eit hjelpemiddel for å få god oversikt over alle setningar, sig og deformasjonar er å teikne opp ei prinsippskisse av bygget, for så å teikne inn skadene.
Skisser som syner kva for skader konstruksjonen lid av.
Eg får ei raskare forståing av bygningen ved å gjera denne skisseøvinga. Ein kan lettare identifisere skader som heng saman, t.d på kvar side av bygget. Vidare kan det vera like viktig å finne skader som burde henge saman, men som ikkje gjer det. På skissa som syner lengdesnitt av aust/vest-delen, ser ein eit loddavvik på eine sida. Dette loddavviket burde ein funne att på motsett side av konstruksjonen. Sidan ein ikkje gjer det i dette tilfellet, må ein studere nermare på konstruksjonen. Det syner seg fort at samhaldet i konstruksjonen ikkje er bra og at konstruksjonen difor glir frå kvarandre.
Plana vidare er å sjå på mogelegheita for å kunne utvikle eit «reaksjonsskjema» som lettare og enklare skal kunne identifisere strukturelle skader på bygningar. kanskje noko i retning av dette;
Tanken er å seta opp ei slik reaksjonsrekkje for fundament, vegg, dekke, og takkonstruksjon. Ein del av reaksjonane vil gripe inn i kvarande i skjemaet, noko som eigentleg vil leide ein snøggare til målet, som er å identifisere skader, samt enklare sjå mogelegheita for å reparere.
Etter mange år med lyfting av konstruksjonar, kjem ein likevel innom tvilstilfelle. Det kan td. ha vore utført reparasjonar, kanskje har vindauga vore remontert etter at bygget har sige så mykje at det ikkje lenger let seg opne. Etter ei oppretting ser ikkje vindauga bra ut, ikkje let det seg opne og ikkje er det beint og i lodd. Slike avvik er ofte ikkje så enkelt å fange opp før ein er godt inne i prosessen. Slike moment å sjekke/hugse på kunne òg vera ein del av reaksjonsskjemaet.
Ikkje alltid skada er like vanskeleg å få auga på. Likevel kan det vera vanskeleg å juster tilbake.
Vi studentane på læringsarena Stiklestad i haust 2019-sumar 2020, fekk i oppgåve å byggja eit stavbygg som skulle væra eit nytt lagerbygg for gamle redskaper frå vegvesenet. Nokre av mine medstudentar har skrive om same bygg i tidlegare bloggpostar. Eg skriv litt om kammfellingane vi laga og drøftar rundt dei.
Topp og ytre veggliv er referanse. Vi melte oss ned 3 1/2″ ned i ytre veggliv og 2 1/2″ i indre, slik fann vi høgda på kammen. Etter vi saga og tappa ut planet til toppen av kammen melte vi oss 3/4 dim frå ytre veggliv og fann bredda på kammen.
Når ein skal ha boks i flukt blir det eit dilemma kor mykje ein skal taka ut av tverrline og langline. Med ettertanke kunna vi ha spara meir ut av sylla for å få ho sterkare, for golvbjelkene blir ikkje så mykje mindre stive om dei har mindre dimensjon i felling. Håvard (prosjektansvarleg) nevnte dette. No krev sylla meir av fundamentet for å få nok støtte.
Eg lurar på kor høg kammen lyt vera, i kammar generelt? Etter mitt skjønn kunna dei ha vore berre 3/4″ eller til og med 1/2″høge; bærre så høge at han ikkje skli over kanten. Det kan ein vel vurdere ut ifra kor mykje trykk som ligg oppå fellinga, f.eks. ein stav. De høgare kammen er, jo meir forsvinn av tverrsnittet av stokken i fellinga. Det blir meir moment på kammen ved strekk som kan føre til utklaking. På andre sida igjen kan kammen deformerast i langhakket visst han blir for lav og det er for mykje krefter på han.
Kamnov der vi tok ut kvart dimensjon i indre veggliv og halv i ytre som virkar å være standard for bredde på langkammen. (Det kan sjå ut som det er teke ut mindre enn halv dimensjon, men boksen er ikkje endekappa).
Om vi ser for oss at kamnova kunne hatt grunnare kam; så ville langhaken fått mindre ved til å halde imot utglidning og tverrhaka mindre sjans for å klake (kløyve) ut. Kanskje ein då kunna ha kompensert litt med å taka ut meir enn halv dimensjon i tverrhaka.
Eg har lært å ta ein tommestokkbredde opp og ned frå senter for å finne kamhøgda og å bruke kvart og halv dimensjon. Attåt har vi bruka ku på husansnotra. Ein med heil, halv, tredjedels, kvart dimensjon og ein tomme har vi laga dei på for å bruke på fleire forskjellige fellingar enn kam. Ku er veldig smart å bruke, han gjer merkjeprosessen mykje snarare, men det kan vera kviasamt å bruke noko tid for å få dei nøye laga for dei lyt vera like og dei er lette å miste i spondongen.
Eg har også bruka ei ku som har forma på tverrhaka, som skal stå att i nova Eit kont stykkje. Det er ein dimensjon langt og halv dim bredt i eine enden og kvart breidde i andre som ein legg i flukt med ytre veggliv for å merkje haka etter ein har tappa seg ned til toppen av kammen.
Eit viktig moment å legge merkje til når ein lager kamnov: Er boksen akkurat på dimensjon, er han breiare, eller smalare og korleis er dei til kvarandre? Visst ein hell seg til ytre veggliv heile tida .
Kva for prosedyre har dåkk lert og kva tykkjer dåkk er beste måten å lage kam på?
Lagerhuset ferdig kledd.
Ei problemstilling:
Når vi skulle felle ihop sylla diskutera vi om langhaka skulla vera i langsylla eller omvendt. For langkammen er sterk, men upresis (han krymper og kan gli ut). Og tverrkammen svakare, (han kan klake ut) men presis når han held. Eg meinte at golvbjelkene holdt langsylla såpass ihop at tverrhaka kunna vera i langsylla for da blir sylla sikra for utglidning båe på langs og på tvers. Det vart gjort slik.
Arbeid med bøkene til Nielsen og Viestad. Foto : Oaland
I år har jeg på NTNU læringsarena Vestland fått i oppgave å se litt nærmere på skiftning i tømrerfaget. Skiftning er en måte å kunne tegne, og utarbeide alle forbindelser i en konstruksjon. En har muligheten til å lage hele konstruksjoner på bakkenivå uten store løft og unødvendig håndtering av materialene. Skiftning har fram til 2. verdenskrig vært en del av tømrerutdanningen, men forsvant fra læreplanene etter hvert og er helt ukjent for dagens tømrer.
Tegning av sperrebind med tilhørende skiftesperrene (foto: Oaland)
Jeg begynte med å studere flere bøker. Spesielt 2 bøker vekket min oppmerksomhet. «Avbinding av takkonstruksjoner og konstruktive forskalingsarbeider» av N. Peder Nielsen (1932) og «Husbygging: yrkeslære med fagtegning for tømrere» K.M. Viestad (1968). Jeg la merke til at Nielsen nærmer seg faget på en mer teoretisk måte og en som er presis og lett å gjennomføre ved tegnebrettet. Nielsen skriver veldig komplekst og kompakt, og en burde egentlig ha litt forkunnskap for å kunne følge han i beskrivelsene og forklaringene sine. Det gjorde det i begynnelsen vanskelig for meg og jeg trengte litt tid for å kunne tenke meg inn i beskrivelsene hans. Jeg prøvde å gjenskape tegningene hans og forsto på denne måten hva han prøvde å forklare. Viestad har en annen tilnærming. Han prøver å forklare det på en mer praktisk måte, som lar seg gjennomføre på avbindingsplassen. Han jobber mest med en lekte for å overføre mål og viktige punkter, mens Nielsen gjør alt med sirkel og konstruerer de nødvendige punktene. Det lar seg ikke alltid gjennomføre på byggeplassen og kan være mer komplisert å utføre. Allerede når vi begynte å tegne et oppriss på en kryss-finerplate så vi fort at overføringer med passer ikke var mulig fordi så store passere hadde vi ikke. En lekte derimot gjorde akkurat samme nytten. Den hadde vi lett tilgjengelig.
Overføring av mål ved hjelp av lektenTilvirkning av en sjablong for sperrer i et 45*tak
Når en går ut ifra en takkonstruksjon så trenger en ikke veldig mange tegninger for å kunne bygge et komplett tak. En trenger kun å tegne et sperrebind per takvinkel. Eventuelle gradsperr eller kilsperr kommer i tillegg. Når en har sperreplanen og takets vinkler er resten enkelt. I praksis lager en seg sjablonger for forbindelsene som skal utarbeides for å kunne serieprodusere disse der det er mulig.
Alle deler av konstruksjonen kan snues og vendes akkurat som en vil for å kunne få en bedre innsikt i forbindelsen en skal utarbeide. Når grunnflaten til taket og til opprisset er lik skal taket passe når den blir løftet opp i høyden.
Skiftning er et fag og kunnskap som etter min mening må tilbake i lærebøkene. Selv om det finnes avbindingsverk i dag som leverer ferdige løsninger, er disse ikke alltid de mest ideelle løsningene. Jeg mener at grunnleggende kunnskap om dette tema kunne hjelpe i mange situasjoner på byggeplassen og ved bygging av elementer som skal passe sammen med andre.
Når en tenker på at med hjelp av denne metoden har de største kirkebyggene og landemerkene blitt reist. Det er egentlig uforståelig at den kunnskapen ikke blir videreført og gitt videre til kommende generasjoner.
Oppgaveteksten til svenneprøven 1926 (Nielsen, S.41, 1932)Løsningen til oppgaven. Hadde dagens svenn klart dette? (Nielsen, S. 40, 1932)
Eine veka av læringsarenaen var eg heime på Sunnmøre og arbeidde for Kåre Løvoll og firmaet Byggtrad. Løvoll as. Vi skulle reise eit grindbygg vi hadde lagd delane til tidlegare på året. Grindverk er ein gamal byggjeteknikk som er mest utbreidd på Vestlandet. Byggjeskikken har vore mest vanleg i naust og låvar. Grindbygg er ein lett og luftig stavkonstruksjon, som egnar seg til bygg utan behov for varmeisolering. Vi skulle reise byggjet utanfor verkstaden, berre som ein åpen konstruksjon, for å ha eit tak å arbeide under til andre prosjekt. Så mykje som det regnar her på Vestlandet er det svært nyttig å ha…
Grindbygde hus har to eller fleire grinder etter kvarrandre på tvers av lengderetninga. Storleiken på byggjet vårt er slik at det var passeleg med tre grinder. Ei på midten, i tillegg til sideveggane. Ei grind består av to stavar som knytast saman med ein bete, eller tverrbjelke, og eitt eller to skråband. Bygget vårt er såpass stort at vi brukte to skråband. Både krumvekste og rettvekste skråband forekjem. Vanlegvis brukar ein rotenden av ein stokk, eller overgongen frå stamme til ei solid grein. Skråbanda våre er laga av bjørk, medan stavane og og betane er av fure. I tradisjonen er skråbanda festa med trenaglar, men vi velgte å jukse litt og bolta dei saman.
Her vi skulle reise bygget er det asfaltunderlag, så stavane kunne berre stå rett på bakken utan at vi trengte å tenkje noko meir på underlaget. Hadde det vore mjukt, vått underlag måtte vi ha reist bygget på steinar. Vi riggja oss til og la ut stavane og definerte lengda på byggjet. Vi la stavane med framsida ned, felde rafta ned i stavane. Så festa vi skråbanda. Då alle tre raftene var festa i hop var dei klare til å reisast. Stavane er fem meter lange, så vi velgte å bruke kranbil for å reise dei.
Vi reiste alle tre grindene og stiva dei av med foreløpige med skråstivarar mellom kvar grind.Stavlegjene er på plass
Over beten, inntil stavane, ligg to stavlegjer, som bind huset saman i lengderetninga og støttar taksperrene. Knutepunktet mellom stav, bete og stavlegje er utforma slik at alle delane låsast fast saman. Stavleiene støttar seg mot ytterendane av stavane som ragar over overkanten på slindrene. Slik kan stavleiene motstå sidetrykket frå takkonstruksjonen. Halsen ligg ned i hakket i overkanten til stavane, slik at hovudet kjem ut forbi yttersida til stavane.
Vi heiste stavlegjene også opp med kranbilen. Så rigga vi opp stillas og skulle feste dei kontinuerlige avstivarane mellom grindene. Vi bestemte oss for å lage kryssband på øvste halvdel mellom kvar grind. Vi felte dei saman 50/50 så det vart kant i kant på utsida.
No vart alle taksperrer og reimer heisa opp. Vi bandt saman alle sperrene parvis i mønet. Så hadde vi opp reimene 1/3 lengd ned frå mønet på begge sider, støtta dei opp med stolar og bandt dei saman med hanebjelkar. Stolane hadde vi laga tappar på, og reimene var tappa ut med takvinkelen på oversida, så undersida med tapphol i til stolane i kom i vater.
No byrja det å likne på eit ferdig bygg. Vi lekta opp taket med 60cm mellomrom og la blikktak. No er det berre å starte på neste prosjekt med tak over hovudet.
I samband med faget Tradisjonsfagleg Utøving 2 så har eg starta med eit eiga prosjekt. Eg skal byggje eit tilbygg på verkstaden som eg har. Dette er planlagt som eit tilbygg på 7,2×10 meter utvendig. Eg har ein tanke om at tilbygget skal vere eit stort ope rom. Det er nok ikkje til og stikke under ein stol at Gudbrandsdalen er mest kjent for tømra bygninger og ikkje for stavkonstruksjoner. For og gjera ein potensiell lang historie kort, så er dei fleste relevante bygg i stavkonstruksjon som eg har sett på, frå tida 1900-1940 (1945).
Fasadeteikning av verkstaden og tilbygget. Tilbygget til venstre på teikninga.
Til no så har eg arbeida med planlegging. Det som er ein fordel med første halvdelen av 1900-talet er fagbøkene frå den perioda. Eg har tatt utgangspunkt i «Håndbok for byggmester og bygningstømrer» av arkitekt Michael Michelsen (2. utgave 1934). Eg bruka også «Fagbok for tømrere» av N. Peder Nielsen, Andreas Nygaard og Gregor Paulsson (1944). Eg satte nokre begrensninger til tilbygget. Sjølv om eg ikkje skal følge det eksisterande bygget konstruksjonsmessig, så skal tilbygget ikkje skille seg for mykje ut heller. Den totale høgda er ein av faktorene som har betydning. Det er også nokre begrensninger med terreng.
Verkstaden som eg har er ein ombygd brakke frå krigen. slik det står i dag så er den oppsatt rundt 1950. Her er det den opprinnelege takkonstruksjonen bruka opp igjen men med ein modifisering av lengda på dei. Det er også satt på ein oppbygging som gjer at det blir brattere tak.
Takkonstruksjonen på eksisterande bygning
Takkonstruksjonen på eksisterande bygning
Etter og ha leita etter konstruksjon så har eg kome fram til at eg skal bruke eit frittbærande tak som det blir kalla for i Fagbok for tømrere. dette består av sperrer, konge og undersperrer. Desse er plassert ut med 3 meters avstand og det er åser av 4×4 oppå.
Takkonstruksjonen eg skal lage
Ellers så har eg prøvd og kalkulert materialane ut frå framgangsmåten i Fagbok for tømrere. Da teikna eg opp eit parti av veggen og bruka det samt teikninga av sperra til og beregne materialmengda.
Teikninga som eg bruka når eg skulle beregne material til veggane
Vidare så skal det sages materialar, og så skal det bygges. Først på avbindingsplass for så og bli satt opp der det skal stå.
Den tradisjonelle framgangsmåten som er blitt brukt for å finne lengder og vinkler på taksperrer består i at en tegner opp (slår opp) takverkets profil i full målestokk. Stedet der en la oppslagsplanet ble kalt for avbindingsplassen. Fram til 1960-åra var takgeometri og utførelsen av å lage et takverk med grat og killsperrer fast innslag på svenneprøven til tømrere. Etter 1960-tallet har denne kunnskapen mer eller mindre forsvunnet fra tømrerutdanningen.På læringsarena Vestlandet var vi så heldig å få et lite innblikk i takgeometriens, til tider komplekse verden. Som veileder hadde vi Axel Weller som er en tysk tradisjonssnekker som har lang erfaring med takgeometri. Etter at jeg vendte hjem fra læringsarena, prøvde jeg ut noe av min nye kunnskap i praksis, om enn i ganske enkel form da undertegnede er langt fra noen ekspert innen emnet. Det er dette hjemmeprosjektet som jeg nå skriver om. Takformen jeg valgte er et telttak som er 8 kantet. Sperrene består av anleggssperrer, stikksperrer og gratsperrer uten salingshakk for svill. Altså en veldig enkel takkonstruksjon å konstruere.Grat er tysk og betyr direkte oversatt rygg. Jeg brukte en kryssfinerplate på 1,2 x 2,4 meter som underlag (avbindingsplass) til å tegne opp et grunnriss og et oppriss av et miniatyr takverk, men likevel i full målestokk. I mangel av bedre virke, ble taksperrene laget av standard 2 x 4 toms standard trelast av gran som lagerføres i alle byggevarehus. Midtsøylen bla laget av 4 x 4 toms boks.
En trenger noe å tegne opp takverket på. Her ble det valgt en kryssfiner plate. På bilde er senterstreken akkurat avsatt.
Det første som må gjøres er å finne midten av kryssfinerplaten og sette av et punkt nederst og øverst på platen. Ut ifra disse 2 merkene strekes det en snorrett strek langs hele lengderetningen av platen. Denne linjen blir kalt for senterlinjen. Så finnes midten av platen og forholdet 3 – 4 – 5 blir brukt for å få en presis 90 graders vinkel ut ifra senterlinjen. Det vil si at det måles 80 cm på senterlinjen fra punktet satt av på midten og 60 cm utover på tvers av platen. Hvis man nå har nøyaktig 1 meter imellom punktene har man så en presis 90 graders vinkel. Når dette er gjort kan man streke opp på tvers av platen. Denne linjen blir kalt 0 linjen eller vinkellinjen. Man har nå det som trengs for å starte tegningen av selve takverket.Grunnrisset er det første så tegnes på. Midtpunktet av takverket består av en søyle formet som et oktogon tilvirket av en 4 x 4 toms boks. Et midtpunkt avsettes på senterlinjen cirka halvveis mellom 0 linjen og platekanten. Ut fra dette midtpunktet tegnes oktogonen opp som utgjør søylen og midten av takverket.
Grunnrisset er ferdig tegnet på. Midten av takverket befinner seg i senterlinjen på platen. Utfra midtpunktet til takverk og senterlinje blir senterlinjene til sperrene tegnet inn.
Neste skritt blir å tegne opp alle senterlinjene til anleggssperrer, stikksperrer og gratsperrer. Senterlinjene er hyven (ryggen) til sperrene. Ut fra midtpunktet til oktogonen trekkes det senterlinjer til alle sperrene i takverket. Størrelsen på takverket sitt oktogonen fastsettes og alle streker forbindes til man har en perfekt 8 kantet form. Så blir sperrenes reelle tykkelse fastsatt og tegnet på ut fra senterstrekene. Man har nå tegnet ferdig grunnrisset og kan gå over til neste fase, Nemlig å tegne opp opprisset. Det er opprisset som brukes til å finne reelle lengdemål og vinkler på sperrer ut fra mål hentet fra grunnrisset.Opprisset tegnes ut fra senterlinjen til platen og 0 linjen. Lengden på senterlinjene til sperrene i grunnrisset måles. Disse målene avsettes så på 0-linjen. Dette er ikke den reelle lengden av sperrene, den finner man først etter å ha satt av høyden/vinkelen for takverket. Høyden markeres på senterlinjen. Man kan så forbinde lengdepunktet på 0 linjen og høydepunktet på senterlinjen for å få vinkelen og det korrekte kappmålet på sperrene.
Opprisset er tegnet øverst på platen. alle mål finner man på grunnrisset og overfører så til opprisset. På venstre side er anleggssperren tegnet inn, på venstre er grat og stikksperren. I midten er omrisset til søylen tegnet inn. Helt øverst skimter man vinkel og avfasings streker til Anlegg-, grat- og stikksperrene.
Viktig å merke seg at denne linjen man har avsatt på opprisset, er hyven til sperrene. Ut fra denne avsettes sperrens virkelige bredde. Jeg valgte å tegne grat og stikksperre på høyre side av senterlinjen, mens anleggssperre ble tegnet på venstre, dette for å unngå for mye forvirring. For å finne vinklene til flatene sperrene hviler mot og for å finne selve formen til søylen, Må alle streker overføres fra søyle oktogonen og loddrett opp fra grunnrisset og avsettes parallelt med senterlinjen.Siden alle sperrer hviler mot søylen, ble denne laget først. Søylen legges ned på opprisset med endeveden i kant med 0 linjen og innenfor strekene som markerer omrisset til oktogonen. En vinkel brukes til å overføre strekene fra opprisset til selve emnet. Dette blir gjort i begge ender av søylen. Både senterlinje- og oktogonomrisset blir avsatt på emnet. Så snus emnet 90 grader rundt, og de samme strekene avsettes igjen. Videre forbindes alle disse strekene med hverandre på langs av emnet på alle 4 flater. Så tegnes formen til 8 kanten inn i hver ende av emnet. Grunnformen skal nå være markert og vi kan tilvirke søylen, dette gjøres ved bruk av høvel.
Emnet som skal bli til søylen legges ned på opprisset og strekene overføres med hjelp av vinkel. Dette gjøres først en gang før emnet så må snus 90 grader rundt og man overfører samme streker igjen. Viktig å streke i begge ender av emnet.
Når søylen er ferdig bearbeidet og formet til en oktogon, legges den tilbake på opprisset. Det er 3 høyder som må markeres fra senterlinjen. Den ene er takhøyden og det andre er skjæringspunktet hvor hyven til sperrene treffer omrisset til oktogonen. Den tredje er totalhøyden på søylen. Videre blir samme framgangsmåte som tidligere brukt til å overføre strekene som utgjør flaggstangen på søylen, Også denne er 8 kantet, men med mindre diameter. Strekene forbindes igjen fra hver ende, men denne gangen kun ned til merket for takhøyden.
Emnet er formet til en 8 kant og legges tilbake på opprisset for å overføre omrisset som utgjør flaggstangen. Videre blir 2 av sidene saget ned til takhøyden og streker forbindes for å tilvirke oktogon formen til flaggstangen.
Emnet er formet til en 8 kant og legges tilbake på opprisset for å overføre omrisset som utgjør flaggstangen. Videre blir 2 av sidene saget ned til takhøyden og streker forbindes for å tilvirke oktogon formen til flaggstangen.
Søylen kappes på endelig lengde og formen til minioktogonen tegnes i endeveden og 2 flater sages så ut. Når 2 flater er saget ut må strekene på nytt forbindes på de sagde flatene. Takflaten som går fra toppen av sperrene til sålen av flaggstangen må så lages. Den lages ved å forbinde punktet mellom der sperre hyven treffer omrisset til oktogonet og opp til flaggsålen. Søylen er nå ferdig tilvirket og kan settes på plass i grunnrisset.Etter på står anleggssperrene for tur. Lengden måles fra senterlinjen til anleggssperren funnet i grunnrisset og avsettes på nullstreken ut fra senterlinjen til platen. Dette punktet forbindes med høydepunktet på senterlinjen til platen. Sperrens virkelige bredde tegnes så på og emnet som utgjør sperren legges oppå opprisset. Anleggssperren er den enkleste å tilvirke for her er det bare 4 linjer som skal overføres til emnet, Ved disse 4 linjene finner man vinkelen i sperretoppen og vinkelen ved takfoten. Linjene overføres, forbindes og sperren lages.Anleggssperren legges på opprisset, Vinkel brukes for å overføre merkingen fra platen til emnet. Når all merking er utført tilvirkes sperren etter strekene som er avsatt.
Videre er det stikksperrene som lages. Her er det 6 linjer man må overføre til 2 kappflater, og i tillegg er det også en dobbel avfasing i sperretoppen. Denne finner man ved å måle fra senterstreken på stikksperren til hvor den treffer anleggsflaten til anleggssperrebindet. Når målet er funnet, markerer man midten på emnet og forbinder alle streker. Stikksperren er nå klar for tilvirkning.
Avfasingen på stikksperren måles på grunnrisset fra senterlinjen mot omrisset til anleggssperrer og avsettes på emnet sammen med vinkelen til anleggsflaten mot søylen
Avfasingen på stikksperren måles på grunnrisset fra senterlinjen mot omrisset til anleggssperrer og avsettes på emnet sammen med vinkelen til anleggsflaten mot søylen
Den siste sperren som tilvirkes er gratsperren og er også den som krever mest arbeid. Her er 6 linjer som skal overføres fra opprisset, men i tillegg har man her en avfasing på ryggen av selve sperren. Denne finner man ved å lage en vinkelrett strek ut fra senterlinjen på gratsperren til krysningspunktet der omrisset til sperren møter vinkelen til oktogonet. Så lager man en parallell linje fra enden av gratsperrens senterlinje. Avstand mellom disse 2 linjene gir nå avfasingen til sperren.Avfasingen til gratsperren finnes ved å sette en strek vinkelrett ut fra senterlinjen og forbinde denne med sperre omrissets skjæringspunkt til omrisset av selve takverket. Så settes det en parallell strek ut fra enden til senterlinjen. Avstanden mellom disse 2 er avfasingen til gratsperren.
Emnet legges på avbindingsplaten og linjene overføres på samme måte som tidligere. Når alle linjer er overført og forbundet med hverandre, lages kappet ved sperretopp og ved takfot.
Her er vinklene til kontaktflaten der sperren møter anleggs- og stikksperre tegnet inn. Man skjærer så med sag langs strekene, men lar ca halve streken stå igjen. Så høvles det helt glatt og til slutt sjekkes det hvor plan flaten tilkappet er før sperren prøves i grunnrisset. Dette gjelder for øvrig alle sperrer i takverket.
Her er vinklene til kontaktflaten der sperren møter anleggs- og stikksperre tegnet inn. Man skjærer så med sag langs strekene, men lar ca halve streken stå igjen. Så høvles det helt glatt og til slutt sjekkes det hvor plan flaten tilkappet er før sperren prøves i grunnrisset. Dette gjelder for øvrig alle sperrer i takverket.
Så stilles ripmoten inn på halve bredden av sperren og senterstreken avsettes langs hele lengderetningen til sperren. Ripmoten stilles så inn på målet man har funnet til avfasingen og dette målet avsettes på begge sider av sperren. Fra der vinkelen starter, altså i skjæringspunktet mellom sperrer. (spissen av sperren) går avfasingen over til 0. Avfasingen høvles med slettokse. Alle kappflater ble først saget med grindsag, så nærme streken som mulig. Så ble kappflatene bearbeidet med støt- og pusshøvel og til slutt ble vinkelen brukt for å sjekke om det var en plan flate. Dette gjelder alle sperrer.
Sperrens avfasing er tegnet på. Legg merke til at ved vinkel fram til sperrespissen går avfasing over til 0.
Når avfasing er laget sjekkes det at flaten er plan før sperren prøves i grunnrisset.
Det har vært interessant å få et lite innblikk i hvordan takverkene ble tilvirket før i tiden og få prøve dette i praksis. Jeg vil utvilsomt jobbe mer med dette i framtiden for å utvide min begrenset kunnskap i dette. For å sitere en av mine medstudenter. Det her var goooy…..Takverket er ferdig og flagget heist til topps. Den tradisjonelle sperreskålen pågår i bakgrunnen, men egner seg ikke til å vere med på foto.Nybygd takkonstruksjon med den nydelige Lysefjorden i bakgrunnen.
Det finnes mange fine ting i livet til en handverker
Enkelte perioder hoper herlighetene seg opp, og noen slike perioder har det vært i vinter, på Lærearena Stiklestad. Til vanlig jobber man jo delvis bak en PC, og delvis med å sette i stand gamle, skjeve bygg. Dermed blir det å bygge noe helt nytt i rått tømmer, en fin kontrast i hverdagen. Tettvokst trøndergran, kvae i buksebaken, litt kaffe i koppen, i et miljø av flinke og trivelige medstudenter og veiledere, er noen av trivselsfaktorene i prosjektet vårt.
En garasje av det finere slaget
Bygget vi setter opp skal bli en ny, uisolert garasje for den veghistoriske utstillingen ved Stiklestad Nasjonale Kultursenter, og skal huse en samling med vegarbeidsmaskiner. Huset har ei grunnflate på 6 x 12 meter, i en etasje pluss røst, og er i all hovedsak konstruert i 6 x 6« boks. Syllstokk og raftline består av en enkel 6 « boks, som har fått en kamming i hjørnene. Vi eksperimenterte litt med både enkle hakeskjøter, og rett og skrå fransklås med kile, i skjøtingen av syll og liner.
I lengderetningen består huset av 3 like store seksjoner, langveggene blir holdt sammen av to samhald inni bygget. Nede i gulvplanet er en av gulvåsene plassert under hver samhald. Veggkonstruksjonen består av stolper i 6« boks, og rundt alle vindusåpninger er det litt smekrere staver i 4« x 6«. Mot alle hjørner stives bygget med skråband i 4«x6«. Oppå alle samhald er det felt ned ei storsperre, og takåsene og mønsåsen hviler oppå disse. Tilhugde kabber spikret i sperrene hindrer at åsene sklir nedover.
Flere ganger denne vinteren har jeg møtt opp på Lærearenaen, med litt stille takknemlighet over å komme til dekket bord. På grunn av at jeg var ny på denne lærearenaen i januar, hadde de andre sagd mye av boksen som skulle brukes til selve konstruksjonen av bygget på forhånd. Dermed kunne vi gå rett på og lage alle deler til konstruksjonen. Dette foregikk i den gamle garasjen som dette bygget skal erstatte. Med 2 plussgrader, og sludd servert i 45 graders vinkel av en sur liten kuling, gikk det noen varme tanker til gammelbygget i disse dagene.
Fallgruvene åpner seg ved prefabrikkering
Lærearenaen har tilgang på ei eldre sirkelsag, høvelig plassert 10 meter bortom byggeplassen. Det å kunne sage material «just in time» på plassen, løser mange problemer og bidrar til god framdrift i prosjektet. For å holde styr på hvem som lager hva, har vi laget enkle skisser av alle fire fasader, der vi nummerer alle konstruksjonsdeler på disse. I tillegg lagde vi lister der vi skrev navnet vårt på delen når vi begynte på den, og krysset delen ut når den var helt ferdig.
En enkel ku med to riss ble brukt for å merke bredda på tappen og tapphullet. På tross av alle system og diskusjoner er det likevel fort gjort at streken sto igjen, og at noen av tappene ble for trange. Og jo flere folk som deltar, desto større blir mulighetene for litt forskjellige måter å gjøre ting på. En viktig lærdom ble at mange handverkere, og stor grad av prefabrikkering, øker behovet for system og kontroll. Alle arbeidslag med respekt for seg selv er oppmerksom på referansesiden, må vite. Selv om dette er sagd tømmer, kunne fort gamlesaga vår slenge en liten kvart- tomme på dimensjonen, nok til at vi måtte bestemme oss for hvilke sider som skal være slett, altså referanseside.
Overkant gulvplan, utside vegger, og underkant raftline ble logisk nok valgt som slette sider. Senere ble samhaldene som er felt ned over raftlina, felt ned i forhold til underkant av raftlina. Underveis i produksjonen markerer vi referansesidene med en liten trekant med blyanten. Slik sorterte vi vakant og andre skavanker dit det var best å legge den på hver enkelt del.
Square rule og mill rule
I løpet av vinteren har jeg lært at enkelte, men neppe alle amerikanerne, skiller på «mill rule» og «square rule». Førstnevnte handler om å måle ut fra slette sider på sagd material som er jevn, mens sistnevnte innebærer å jobbe ut fra slette sider og beine linjer, som konstrueres i ujamnt tømmer som ikke nødvendigvis er sagd, der disse sidene kun hogges slett der du har bruk for det, for eksempel i hjørner og sammenføyninger. I dette prosjektet er vi vel på en tilnærma «Mill Rule», der vi i tillegg har tatt høyde for litt ujamn saging, med å være nøye på referansesiden. Med på kjøpet fikk vi også noen gode konstruksjonsdiskusjoner underveis. 6« høyde på tømmeret er egentlig ikke så mye, og fordeling av ved og høyde i sammenføyningene blir viktig å tenke på. Hvor går kreftene? Hvor er det størst fare for brudd? Hvilken del i sammenføyningen trenger mest ved?
Reising av bygget
Før neste samling, hadde driftige museumsarbeidere på Stiklestad fjernet gammelgarasjen, gjort klar tomta i mildværet, og lagt an solide granittblokker til holdstein under hjørner og langsyll. Så dermed kunne vi gå rett på legobyggingen, med andre ord. Etter å ha lagt opp langsyll, tverrsyll og gulvåser, og tatt diagonalene, virket det som en god idè å prøve alle staver og deler til raftlina, det er jo som kjent litt trasig å måtte stå i løse lufta mens man plages med eventuelle deler som ikke passer. Etter å ha justert litt her og der, stablet vi oss videre oppover.
Å stable opp et slikt bygg, med en kombinasjon av muskler, samt litt hydraulikk og stillaser, går da ganske fort. Underveis i planleggingen ble stivheten i bygget diskutert. Eier vil ha mest mulig plass innvendig, og siden bygget ligger på ei tomt som ikke er så vindutsatt, var flertallet enig i å sette det opp uten skråstiving «tverrskips» under samhaldene. I hver røstende var det jo skråband denne veien uansett, og bygget skal jo ha undertak av stående bord, som vi i utgangspunktet vurderte som en avstivende skive.
Ikke prøv dette hjemme!
Når bygget kom opp, så var det nok at en mann satt oppå takåsen og saget litt, så svaiet det fort et par cm sideveis. Selv om vi slår på bordtak, som vil stive noe, er jo dette kun 6« brede bord, de utgjør ikke en like stiv skive som f. eks brede plater ville gjort. Vi har foreløpig spikret på midlertidige skråband her, og løser nok dette med å felle inn rotknær under samhaldene, som ikke stjeler noe gulvplass.
Lonesome Korona Blues
Vi fortsatte med kledningen på bygget, men midt i dette kom naturen og viste sine krefter til oss. Ikke i form av vind, skred eller flom, men med et lite virus fra Kina som har stoppet all videre bygging inntil videre. Vinterens bygging har i alle fall vært rik på erfaringer, og det å diskutere og prøve ut løsninger, øker forståelsen og tryggheten i løsningene man velger.
Vi har i en årrekke fulgt med på midt-delen av denne tre-delte fjøsen på Strømsør gård i Bardu. Det var behov for vedlikehold og oppretting over det hele. Her vil jeg belyse noen av de interessante funnene i prosessen og noen av problemstillingene vi møtte.
Strømsør gård ble bosatt i 1839 av Erik Simonsen og han oppkalte gården etter hjemgården i Alvdal. Gården ligger på ei hylle i det ulendte terrenget, og tunet hviler på ca 290 moh. Tunet består av 7 bygninger, tre av de er fredet. Rundt tunet finnes det spor og rester etter de tre manglende byggene som i alt gjorde at det her totalt var hele 10 bygg! Kulturlandskapet gården ligger i er forøvrig også fredet.
Midt-delen av fjøset har en nedsenket takflate i forhold til tilstøtende kufjøs og stall. Denne delen av bygget ble rekonstruert i 1992 og nevnes som sau-fjøset i midten. Den består halvt om halvt av ei tømmerkasse med kamnov og en stavrøyst del. Fundamenteringen var nokså underdimensjonert, da lina og sylla lå an på små steiner som lå rett an på matjord. Dermed var bygget preget av ulike setninger i alle himmelretninger og vippingen av fundamentene sprengte ut bakveggen. I og med at takflaten er senket på denne fjøsdelen, sørger kong vinter for å avrette høydeforskjellen med snø. Konsekvensen er at det i midt-delen legger seg ca 50cm mer snø enn på de tilstøtende byggene, og dermed øker snølasten. I takkonstruksjonen har det gjennom årene vært nødvendig med ymse tiltak for å bære lasten. Konstruksjonen i sin helhet ble vurdert gjennom flere befaringer av hele fjøset og vi kunne etterhvert konkludere med at utbedringer ikke ville være tilstrekkelig ettersom omfanget fra grunnforhold, fundamentering, takkonstruksjon og sammenføyninger rett og slett måtte gjøres om. Demontering og riving ble dermed et faktum. Gjenreisingen skal hente konstruksjonsprinsippene og samsvare med materialbruken som vi finner i de to tilstøtende byggene. Utforming og valg av løsninger skal være representativt for byggets tidsperiode og de to tilstøtende byggene. Prosjektet er finansiert av eier Midt Troms Museum, Troms fylkeskommune og Riksantikvaren.
Videre vil jeg i denne posten fokusere på selve takkonstruksjonen.
I dokumentasjonsrunden tok vi mål og gjorde enkle skisser av alle sperrebind for å få en oversikt over materialbruken, dimensjoner og treslag. Etterhvert kom det tydeligere fram en klar sammenheng mellom materialdimensjon og de bevisste valgene ved bruk av furu og bjørk i staver, sperrebind og åser. Med dette grunnlaget kunne vi produsere ei materialliste basert på funnene i de opprinnelige bygningsdelene.
Skisse sperrebind, Kjartan Gran
Materialvalg: Åsene er i hovedsak bjørk, vekselsvis er det furu/bjørk i storsperrene og samhald, raftene er i furu. De fleste stavene er i bjørk med slanke dimensjoner fra 3×4″ til 4×4″, resten furu der størrelsen øker til 5×6″ og 6×6″. Som avstiving av 2.etg er det 14 skråband, der 13 av disse er i bjørk ca 2×2 tommer. Det siste av furu er ca 2×3 tommer. Mønsteret vi ser ut i fra materialbruken i de eldre tilstøtende byggene viser tydelig at her har tømrerene hatt god kontroll på styrke-egenskapene i bjørk og furu. Det må også nevnes at samtlige skråband i bjørk også jobber i strekk. Dette kommer svært godt frem av plassering og fellingene, der vi ser at de ikke tar trykk. Det ble til at vi kalte disse bjørkestranglene for «strekkband» i arbeidet på fjøsen. Vinkelen varierte stadig og ble ikke fokusert på i oppmålingen ettersom det er ingen av de opprinnelige strekkbandene vi skal berøre. De står plassert i en en såppas lav vinkel flere plasser at det er tydelig at de ikke er tiltenkt å jobbe i trykk. Er det andre tømrere som kommer over denne varianten må de gjerne komme med innspill til løsningen. De fleste ser ut til å være originale, enkelte kan være skiftet ut eller kommet til senere ved istandsetting.
Bjørk som «stekkband» på stallen, i tverrsnittet mot midt-delen. Her er det 10 band som jobber sammen.
Kløyving av ved på sperrefot.
Under demonteringen av takkonstruksjonen fikk vi se tydelig på skadene som hadde oppstått. Sperrebukkene besto av rundtømmer i 7-9 tommer, der toppendene ble brukt som storsperr. Her må det understrekes at denne løsningen finner vi ikke i de eldre bygningsdelene. Storsperrene har ikke klart å bære taklasten og de har gått til brudd i flere av de store kvist-partiene. Storsperrene har et enkelt hakk som felling mot samhald. Det er ingen tapp i fellingen, så låsingen er utført med en toms demling. Se bilde over. Utfallet er at endeveden i fellinga på samhaldet har gitt etter flere plasser. Over ser vi to gode eksempler der storsperra har knekt, har ei dårlig innfesting ved takfoten. Sammenlagt fører dette til at storsperra fungerer som et brekkjern for å kløyve ut veden som skal holde sperra på plass. Det er ca 25-30 cm ved på utsiden av sperretåa, som må kunne sies å være en liten skalk for å støtte denne type felling.
Når det nå skal bygges ny konstruksjon, ønsker vi å tilnærme oss de originale fellingene, og dermed få betydelig større skalk ut mot rafta. Ut i fra fellingene i de tilstøtende byggene kunne vi sammenfatte og velge en løsning, rettere sagt to versjoner av samme løsning. Ettersom material-dimensjonene på sperrebindene i furu og bjørk ikke er like krevde det to like fellinger med forskjellige mål for henholdsvis furu og bjørk.
Fellingene av storsperr mot samhald må stå i forhold til høyden på raft. Under arbeidet med å komme frem til en god løsning på temaet var Roald Renmælmo til stede for veiledning og vi kunne sammen se på de gamle løsningene opp i mot det vi skulle reprodusere.
Den nye rafta får 5 sperrebind. nr 1,3 og 5 er i furu – nr 2 og 4 er i bjørk. Takflata må naturligvis stemme, så vi kunne regne oss ned i fra det tenkte planet som er underkant taktro/overkant langsgående åser. Raftlinja kunne vi plassere horisontalt på rafta, og raftlinja brukes som referanse inn på samhaldet. I all merking kaller vi denne raftlinja selv om det blir ei tenkt/stiplet linje langs samhaldet.
Skjematisk felling av storsperr i furu. Her er raftlinja 1″ under tapp på storsperr.
Over vises fellingene på sperra i furu. Samhaldet er 9-11″ høyde, 6″ bredde. Sperrene er i gjennomsnitt 8″ høyde. En kan se raftlinja (krysning mellom raft og tro) den stiplede referanselinjen inn langs samhaldet. Videre kan en se at vi gjorde et valg om å legge inn en 1×1″ låsing i fellinga på innsiden av rafta. Dette var ikke å finne på de gamle sperrene. Det vi finner, er at det flere plasser har oppstått utglidning, så vi mener dette er en svært nyttig tilføyelse som (forhåpentligvis) aldri vil bli synlig.
Tilføyelsen av denne låsingen fører med seg at en i topp-endene av samhaldet må passe på å ikke felle storsperra for dypt inn i samhaldet. En tomme tå, pluss en tomme tapp er et minimum, da har vi gjerne 4-6″ hel ved igjen mellom fellingene. I Rot-enden av samhaldet er dette mindre problematisk, men en må allikevel tilpasse seg etter dimensjonene.
Samme skjematiske fellingen av storsperr i Bjørk.
Over ser en hvordan fellingen av de to sperrebindene i bjørk blir utført. Systemet er likt som i furu, men målene er tilpasset de slankere emnene i bjørk. Samhaldene er 6-8″ og storsperrene ca 6″. Altså er dimensjonene ca 2″ smekrere enn der det blir utflørt i furu. I skissa over kan en se at tappen på storsperra kan komme så lavt som til raftlinja på et slankt samhald. Da kan det være hensiktsmessig å gjøre fellingen på rafta en tomme dypere for å beholde mer ved i samhaldet.
Skissene vi kom fram til gir altså et merkesystem for fellingene, men er ikke en fasit på hvordan det faktisk skal felles! Som i de eldre konstruksjonene vil det være variasjoner på mengden felling på raft, variasjoner på dybden av sperrefellinga og variasjoner på avstand fra sperretå til rafta.
Raftstokkene felles sammen etter raftlinje og plasseres ut i vater.
Her kunne vi dele opp arbeidet videre i flere stasjoner. De 6 raftstokkene felles sammen og hver raft utgjør 9,5m med tre lengder furu i ca 11″ høyde og 6″ bredde. Målet utvendig på raftene er 6,23m.
I enden av området for rafta låste vi sammen paller i lik høyde som avbindingsplass for oppmerking av samhald og storsperrer. På avbindingsplassen trenger en hovedsaklig de essensielle målene: Plassering og dimensjon raftstokk, Raftlinje og Mønehøyde. Med disse målene tydelig og permanent merket på avbindingsplassen kan vi med flere metoder overføre målene opp på samhald og storsperr. Loddsnor, passer, vinkel og vater kan brukes mens alle sperredelene ligger oppå hverandre i tre høyder.
Jeg mangler desverre et godt bilde av selve merkeprosessen. På bildet under er merkingen allerede over, storsperrene er felt sammen halvt om halvt i mønet og samhaldet er vippet opp for å hogge ut og tappen til storsperra gjøres med et 5/4″ jern.
Her er første bjørke-sperr ferdig og felt ned på rafta. Neste sperr i furu er merket opp på avbindingsplassen og mønet felles i hop. Det sages med svans og rys slett med den flotte Strømsør-bila. Når fellingen er god, låses de to sperrene sammen med en kon 5/4″ dymling.
Fellinga av samhaldet til rafta merkes opp med passer med raftlinja som referanse. Da kan en enkelt gjøre de samme merkingene på selve rafta med den samme passeren.
Det var tydelige spor i de gamle sperrene at det hovedsakelig var øksa som var brukt til fellingene, så det gjorde vi også. Enkelte plasser var det spor etter grovtannet sag, så det hadde vi også for hånden.
Videre er prosessen lik for de kommende sperrene, selv om målene vil variere noe. Felling av åsene, stavkonstruksjonen og de andre detaljene ved bygget har jeg valgt å ikke omtale her, det må få plass i en egen post.
To av sperrebukkene er kommet opp og det hele tar form. Her blir vi å jobbe videre med konstruksjonen frem til ferdige åsfellinger før den demonteres og flyttes opp i bygget.
Da reiste konstruksjoner kom opp som tema på tradisjonelt bygghandverk ved NTNU, så var vi ikke i tvil om at det måtte bli et grindbygg. Omtrent på samme tiden tok Ryfylke Friluftsråd kontakt med Ryfylkemuseet med et spørsmål om vi kunne sette opp en bygning som kunne brukes som grillhus for båt og kajakk reisende. Det eneste kravet de hadde var omtrentlig størrelse og at det skulle være et bygg med rot i lokale tradisjoner. Vi begynte da med å reise rundt i distriktet å se etter bygg som vi kunne bruke som mal/ forbilde under byggingen. Det vi så etter i et bygg var at det var tilnærmet lik størrelse, ikke gjort for store reparasjoner, gjerne urørt og helst en viss alder. Vår faglige veileder, Trond Oalann, var med på letingen etter et potensielt bygg.
På garden Randa på Randøy i Ryfylke stod det et vognhus i stav som holdt omtrent akkurat størrelsen, hadde veldig smekre dimensjoner, tilnærmet urørt og så ut som om det var reist av noen som hadde peiling. Dette bygget ble vår mal for nybygget på Rossøy
Etter oppmåling ble det laget ei kappliste med tanke på hente det vi behøvde av materialer. Siden dimensjonene i vognhuset var veldig smekre så prøvde vi å finne tilsvarende for å kunne gi bygget samme lette utrykket. Det er en god øvelse å gå i skogen og prøve å finne liten nok dimensjon, fort å ta litt for stort og ende opp med å forandre slutt utrykket. Staver, stavlegje og slindre er rydd ned til dimensjon men fremdeles med vannkant og det samme er noen av neglingene.
Sammen med Trond Oalann ble vi enige om å hogge det sammen på «hordamåten» hvor man hogger sammen langveggene først og tar reisene til slutt. Her lokalt i Ryfylke så er det motsatte vanlig, først hogger man sammen reiså med kroband, deretter tar man langveggene med neglinger og skråband. Vi satte oss ned før vi startet og prøvde å lage en plan over arbeidsrekkefølgen slik at vi måtte tenke gjennom hele prosessen før vi startet.
Tenkt arbeidsrekkefølge for Vognhus Randa.
Sortere material til stavlegje og slinder.
Bearbeide stavlegje.
Måle tynneste slinder.
Bestemme grøyp, mellomrom mellom øyrene.
Lage skant for grøype.
Bestmme overkant slinder i staven med utgangspunkt i topp stavlegje.
Merke/nummerering av stav/slinder.
Ta ut for grøype og tilpasset slinderhøgde.
Ta ut sete for slinderen i stav.
Legge ut stavlegje på avbindingsplass.
Legge ut stavane og vinkle/ vatre de.
Kontroler inndeling av sperr.
Felle øyrene ned i stavlegje uten kloss.
Merke på høgda for slinder på stavlegja.
Negling og skråband.
Merking/numerering av delene.
Snu stavane slik at
Utside opp på den som skal ha kledning.
Innside opp på den opne gavlen.
Legge slindrene oppå stavene for merking/parralellforskyving.
Felle inn kroband.
Merking/numerering av delene.
Lage sperremal etter 5/8 dels reising (37°)
Borre for toll.
Produsere sperr
Lage hakk for sperr i stavlegje.
Merking/numerering av delene.
Prøvemontering/reising av bygget og utorhakk for slinder i underkant stavlegje.
Vi prøvde forskjellige måter å ta ut grøypa på. Man kan bruke rammesag og grindsag eller bare øks. Ved bruk av øks så er det lettest og bore med navar først i bunn av grøypa slik at veden slipper lettere i bunn, det blir og flere vendinger av staven ved bruk av øks.
Vi brukte en avbindingsplass for å vinkle og vatre stavene og å få rett skreving. Feller øyrene ned i stavlegjå og feller ned neglinger og skråband. Vi borra og alle naglehull på avbindingsplassen.
Sven Hoftun i arbeid.
Når langveggene var ferdige plukket vi dem ned og gikk i gang med å hogge sammen reiså. Vi brukte en lekte som mal på avstanden opp ved øyrene og vinklet staven. Merket så øyrene over på slindrene.
Når langveggene var ferdige plukket vi dem ned og gikk i gang med å hogge sammen reiså. Vi brukte en lekte som mal på avstanden opp ved øyrene og vinklet staven. Merket så øyrene over på slindrene.
Når de tre reisene var hogd sammen prøve monterte vi reise og felte stavlegjå ned i slinder.
Deretter startet vi med uthogging av sperrehakk og produksjon av sperr. En ting som er spesielt med originalbygget er at den ytterste sperren er trukket inn over øyra på staven.
Når sperrehakkene var på plass tok vi sperremalen som vi laga når det første reise var hogd sammen og begynte å produsere sperr.
Når sperrehakkene var på plass tok vi sperremalen som vi laga når det første reise var hogd sammen og begynte å produsere sperr.
Denne løsningen på klauv og tapp er ikke vanlig her lokal, normalt så blir alle tatt ned til tynneste sperr i toppen før det blir laget klauv og tapp. Denne metoden gjør at dimensjonsforskjell ikke gjør noe. Alt kan og sages ut, det er bare i bunnen av klauva som man må bruke hoggjern.
Under prøvemonteringen blir alt merket og det blir boret for toll og det blir innfelt to skråband i takflaten.
Så er det bare å få bygget fraktet til stedet det skal stå og reise det. Handsteiner var allerede på plass.Montering av bygget tok i underkant av tre timer innbefattet bæring opp fra kaien.
Ferdig bygg på plass
Bygget har en grunnflate på 3,6m x 6,6m. Det skal tekjast med hedler og kles tett på gavlen som vender fra sjøen og halve langveggene.